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Abstract

The aim of this short paper is to establish a spectral algebra analog of the Bousfield-Kan
“fibration lemma” under appropriate conditions. We work in the context of algebraic struc-
tures that can be described as algebras over an operad O in symmetric spectra. Our main
result is that completion with respect to topological Quillen homology (or TQ-completion, for
short) preserves homotopy fibration sequences provided that the base and total O-algebras
are connected. Our argument essentially boils down to proving that the natural map from
the homotopy fiber to its TQ-completion tower is a pro-π∗ isomorphism. More generally, we
also show that similar results remain true if we replace “homotopy fibration sequence” with
“homotopy pullback square.”
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1 Introduction

This paper is written in the context of symmetric spectra [20, 24], and more generally, modules over
a commutative ring spectrumR; see [13] for another approach to a well-behaved category of spectra.
We consider any algebraic structure in the closed symmetric monoidal category (ModR,∧,R) of
R-modules that can be described as algebras over a reduced operad O; that is, O[0] = ∗ is the
trivial R-module and hence O-algebras are non-unital (see, for instance, [8, 18]).

Topological Quillen homology, or TQ-homology for short, is the precise O-algebra analog of
ordinary homology for spaces and is weakly equivalent to the stabilization of O-algebras; see, for
instance, [1, 2, 18, 21]. The TQ-completion of an O-algebra X, denoted X∧TQ, is supposed to be
the “part of the O-algebra that TQ-homology sees” ([8, 17, 19]). Analogous to Bousfield-Kan’s
Z-completion [5] of a space, X∧TQ is the homotopy limit of the cosimplicial resolution built by
iterating the unit map of the monad associated to the TQ-homology adjunction. We review these
constructions in Section 3, but to keep this paper appropriately concise, we freely use the notation
in [8].

Suppose we start with a fibration sequence F → E → B of O-algebras and consider the
associated commutative diagram of the form

F

(∗)
��

// E

��

// B

��
F∧TQ

// E∧TQ // B∧TQ

(1.1)
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in AlgO. The aim of this short paper is to establish sufficient conditions on E → B such that the
bottom row is also a fibration sequence. In other words, we are interested in establishing a TQ-
completion analog of the Bousfield-Kan “fibration lemma” [5, II.2.2], under appropriate additional
conditions on E → B. If we are in the special situation where E,B are TQ-complete (i.e., their
coaugmentation maps in (1.1) are weak equivalences), then this amounts to verifying that (∗) is a
weak equivalence. The following theorem is our main result.

Theorem 1.1 (TQ-completion fibration theorem). Let E → B be a fibration of O-algebras with
fiber F . If E,B are 0-connected, then the TQ-completion map F ' F∧TQ is a weak equivalence;
furthermore, the natural map from F to its TQ-completion tower is a pro-π∗ isomorphism.

This idea generalizes. Suppose we instead start with a fibration p : X → Y that fits into a
left-hand pullback square of the form

A //

��

X

p

��
B // Y

A∧TQ
//

��

X∧TQ

��
B∧TQ

// Y ∧TQ

(1.2)

in AlgO. We would like to establish sufficient conditions on the pullback data B → Y ← X such
that the right-hand square of the indicated form is also a homotopy pullback diagram. Similar to
above, if B,X, Y are TQ-complete, then this amounts to verifying that the TQ-completion map
A ' A∧TQ is a weak equivalence. The following theorem is a generalization of our main result.

Theorem 1.2 (TQ-completion homotopy pullback theorem). Consider any pullback square of the
form

A //

��

X

p

��
B // Y

(1.3)

in AlgO, where p is a fibration. If B,X, Y are 0-connected, then the TQ-completion map A ' A∧TQ
is a weak equivalence; furthermore, the natural map from A to its TQ-completion tower is a pro-π∗
isomorphism.

Remark 1.3. It is probably worth pointing out that our strategy of attack works with O-algebras
replaced by pointed simplicial sets. In more detail: Consider any pullback diagram of the form (1.3)
in pointed simplicial sets, where p is a fibration, and assume that A is connected. If B,X, Y are
1-connected, then the Bousfield-Kan Z-completion map A ' A∧Z is a weak equivalence; furthermore,
the natural map from A to its Z-completion tower is a pro-π∗ isomorphism. This provides a new
proof of the result in Bousfield-Kan (see, for instance [5, III.5.3]) that such A are Z-complete.

For technical reasons explained in Remark 3.5, we make the following assumption; for instance,
it allows for an iterable point-set model of TQ-homology and hence an associated point-set model
for the TQ-resolution of a cofibrant O-algebra. Note that to say an operad O is n-connected means
that, for each r ≥ 0, its constituent O[r] is n-connected.



Fibration theorems for TQ-completion of structured ring spectra 3

Assumption 1.4. Throughout this paper, O denotes a reduced operad in the closed symmetric
monoidal category (ModR,∧,R) of R-modules (see, for instance, [20, 24, 25]). We assume that
O,R are (−1)-connected, and that O satisfies the following cofibrancy condition: Consider the unit
map I → O; we assume that I[r] → O[r] is a flat stable cofibration ([18, 7.7]) between flat stable
cofibrant objects in ModR for each r ≥ 0. This is exactly the cofibrancy condition appearing in [8,
2.1]. Unless stated otherwise, we work in the positive flat stable model structure [18] on AlgO.

Relationship to previous work. Ching-Harper prove in [8] that all 0-connected O-algebras are
TQ-complete. However, it was known that this class does not represent all TQ-complete O-algebras;
for instance, one can show that any O-algebra in the image of U (see Section 3) is TQ-complete,
by an extra codegeneracy argument. We conjecture that any O-algebra with a principally refined
Postnikov tower is TQ-complete, which would mirror the analogous result for Z-completion of
spaces. This paper is a first step in that direction.
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2 Outline of the main argument

We will now outline the proof of Theorem 1.1. It suffices to consider the case of a fibration E → B
in AlgO between cofibrant objects (otherwise, cofibrantly replace). The first step is (i) to build
the associated cosimplicial resolutions of E,B with respect to TQ-homology by iterating the TQ-
Hurewicz map id→ UQ (see Section 3) and (ii) to construct the coaugmented cosimplicial diagram
F → F̃ that is built by taking (functorial) homotopy fibers vertically, followed by objectwise
(functorial) cofibrant replacements. In this way, we obtain a commutative diagram of the form

F

��

// F̃ 0

��

//// F̃ 1

��

////// F̃
2 · · ·

��
E

��

// (UQ)E

��

//// (UQ)2E

��

////// (UQ)3E · · ·

��
B // (UQ)B //// (UQ)2B

////// (UQ)3B · · ·

(1.4)

in AlgO, where the vertical columns are homotopy fibration sequences. Replacing if needed, we
may also assume that F̃ is a Reedy fibrant cosimplicial O-algebra.

Remark 2.1. For ease of notational purposes, we usually suppress the codegeneracy maps in
∆-shaped diagrams appearing throughout this paper.

Applying holim∆ (see [8, Section 8]) to the maps of ∆-shaped diagrams in (1.4), where we
regard the left-hand vertical column as maps of constant ∆-shaped diagrams, gives a commutative
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diagram in AlgO of the form

F //

��

E //

'
��

B

'
��

holim∆ F̃ // E∧TQ // B∧TQ

where each row is a homotopy fibration sequence. The indicated maps are weak equivalences by [8,
1.6] since E,B are assumed to be 0-connected. It follows that the left-hand map F → holim∆ F̃ is
a weak equivalence as well.

The next step is to get the TQ-completion of F into the picture; the basic idea is to prove that
F → holim∆ F̃ is weakly equivalent to the natural coaugmentation F → F∧TQ. Our strategy of

attack is to objectwise resolve, with respect to TQ-homology, the upper horizontal diagram F → F̃

...
(UQ)3F

(#) //

...

(UQ)3F̃ 0 // //

...

(UQ)3F̃ 1 //////

...

(UQ)3F̃ 2 · · ·

(UQ)2F

OO OO OO

(#) // (UQ)2F̃ 0

OO OO OO

//// (UQ)2F̃ 1

OO OO OO

////// (UQ)2F̃ 2 · · ·

OO OO OO

(UQ)F

OO OO

(#) // (UQ)F̃ 0

OO OO

//// (UQ)F̃ 1

OO OO

////// (UQ)F̃ 2 · · ·

OO OO

F

(∗)′
OO

(#) // F̃ 0

(∗∗)

OO

//// F̃ 1

(∗∗)

OO

////// F̃
2 · · ·

(∗∗)

OO

(1.5)

in (1.4), and show that the maps (#) and (∗∗) induce weak equivalences after applying holim∆

(Propositions 4.8 and 5.5). Once this has been accomplished, we obtain a commutative diagram of
the form

holim∆(UQ)•+1F
' // holim∆×∆(UQ)•+1F̃

F

(∗)′
OO

' // holim∆ F̃

'

OO
(1.6)

and conclude that the natural coagumentation map F ' F∧TQ ' holim∆(UQ)•+1F is a weak
equivalence. This proves the first part of Theorem 1.1.

The second part of Theorem 1.1 requires additional work. In order to precisely formulate this
stronger result, we introduce the following two definitions.

Definition 2.2. A map of towers of O-algebras {Xs}s → {Ys}s is a pro-π∗ isomorphism if the
induced map

{πnXs}s → {πnYs}s
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of (abelian) groups towers is a pro-isomorphism for each n ∈ Z. (Throughout this paper, we assume
all homotopy groups are derived [23, 24].)

Remark 2.3. Given a pro-π∗ isomorphism as above, it follows from the associated lim1 short exact
sequence that the induced map holimsXs ' holims Ys is a weak equivalence; see, for instance, [8,
Section 8].

Definition 2.4. Define Tot as the right derived functor of Tot in (AlgO)∆ equipped with the Reedy
model structure. In other words, given a cosimplicial O-algebra X, we define Tot(X) to be Tot(RX)
where RX is the (functorial) Reedy fibrant replacement of X in AlgO

∆.

Stated precisely, the second part of Theorem 1.1 asserts that the map of towers

{F}s
(∗)′−→

{
Tots(UQ)•+1F

}
s

is a pro-π∗ isomorphism. To show that this assertion is true, note that the proofs of Propositions
4.8 and 5.5 imply that the tower maps{

(UQ)kF
}
s
→
{
Tots(UQ)kF̃

}
s

and
{
F̃n
}
s
→
{
Tots(UQ)•+1F̃n

}
s

are actually pro-π∗ isomorphisms for each k, n ≥ 0. Now consider the commutative diagram of
towers of the form {

Tots(UQ)•+1
}
s

//
{
TotsTots(UQ)•+1F̃

}
s

{F}s

(∗)′

OO

//
{
TotsF̃

}
s

OO
(1.7)

It follows from the tower lemma below that the horizontal and right-hand vertical maps are pro-π∗
isomorphisms, and hence the map (∗)′ is as well.

Proposition 2.5 (Tower lemma for O-algebras). Suppose we are given a map from the Reedy
fibrant cosimplicial O-algebra X to a tower of Reedy fibrant cosimplicial O-algebras {Ys}s

X0 // //

��

X1 //////

��

X2 · · ·

��{
Y 0
s

}
s

////
{
Y 1
s

}
s

//////
{
Y 2
s

}
s
· · ·

If
{
Xk
}
s
→
{
Y ks
}
s

induces a pro-π∗ isomoprhism for each fixed k, then

{TotnX}s → {Totn Ys}s

induces a pro-π∗ isomorhpism for each fixed n.

Proof. In the context of spaces, this is proven in [12, 1.4] and the same argument remains valid in
our setting. q.e.d.
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3 Background on TQ-homology and TQ-completion

The purpose of this section is to briefly recall the definition of TQ-homology and its associated
completion construction. For a more thorough introduction, useful references include [8], [17], and
[18].

Definition 3.1. Given an operad O, its 1-truncation τ1O is the operad defined by

(τ1O)[r] :=

{
O[r], for r ≤ 1,

∗, otherwise

The canonical map of operads O → τ1O induces the following change of operads adjunction,
with left adjoint on top.

AlgO
Q̄ // Algτ1O

∼= ModO[1]
Ū

oo (1.8)

Here, Q̄(X) := τ1O ◦O (X) and Ū is the forgetful functor. It is proven in [16] and [18] that this
is, in fact, a Quillen adjunction.

Definition 3.2. Let X be an O-algebra. The TQ-homology of X is the O-algebra TQ(X) :=
RŪ

(
LQ̄(X)

)
, where L and R indicate the appropriate derived functors.

We would then like to form a cosimplicial (or Godement) resolution of the form

X // (TQ)X //// (TQ)2X
////// (TQ)3X · · · (1.9)

Although TQ(X) ' ŪQ̄(X) if X is cofibrant, the forgetful functor Ū need not send cofibrant
objects in Algτ1O to cofibrant objects in AlgO. Consequently, there is no guarantee that (TQ)nX '
(ŪQ̄)nX for n ≥ 2. The canonical cosimplicial resolution associated to (1.8) is therefore unlikely
to be of the form (1.9).

Because of this difficulty, an additional maneuver is required to construct an iterable point-set
model for TQ(X). We follow [18, 3.16] to produce a rigidified version of (1.9). First, factor the
operad map O → τ1O as

O → J → τ1O

a cofibration followed by a weak equivalence. This induces (Quillen) adjunctions

AlgO
Q // AlgJ

//
U
oo Algτ1Ooo (1.10)

where Q(X) := J ◦O (X) and U is the forgetful functor.

Remark 3.3. The adjunction on the right is, in fact, a Quillen equivalence (see [18, 7.21]) and
we therefore think of AlgJ as a “fattened up” version of Algτ1O. Furthermore, it follows that
TQ(X) ' UQ(X) if X is a cofibrant O-algebra.
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The advantage of (1.10) is that the forgetful functor U sends cofibrant objects in AlgJ to
cofibrant objects in AlgO (see [18, 5.49]). For a cofibrant O-algebra X, we therefore have weak
equivalences of the form (TQ)nX ' (UQ)nX for all n ≥ 1. Hence, the canonical resolution

X // (UQ)•+1X : (UQ)X //// (UQ)2X
////// (UQ)3X · · · (1.11)

is of the desired form (1.9).

Definition 3.4. Let X be an O-algebra. The TQ-completion of X is the O-algebra X∧TQ :=
holim∆(UQ)•+1(Xc), where Xc denotes the functorial cofibrant replacement of X in AlgO.

Remark 3.5. We are now in a better position to explain the reasons for Assumption 1.4, which
are as follows. The connectivity assumption on O and R guarantees the results of [7] used below
are applicable, while the cofibrancy condition on O ensures [18, 5.49] that the forgetful functor
AlgJ → AlgO preserves cofibrant objects.

4 Analysis of the horizontal direction

The purpose of this section is to analyze the maps (#) and, in particular, to prove Proposition 4.8.
The basic idea is to, first, establish uniform cartesian estimates on the canonical coface cubes (see
Section 7) associated to the coaugmented cosimplicial O-algebra F → F̃ . This is the content of
Proposition 4.3 and is accomplished by analyzing the corresponding coface cubes of E → (UQ)•+1E
and B → (UQ)•+1B. We next show, in Proposition 4.6, that objectwise application of the TQ-
homology spectrum functor preserves this cartesian estimate. Proposition 4.8 then follows induc-
tively.

Our analysis in this section will involve a number of concepts from cubical homotopy theory.
We provide an overview of the relevant details in Section 7.

Definition 4.1. Let En+1 be the coface (n+1)-cube associated to the coaugmented cosimplicial O-
algebra E → (UQ)•+1E and define Bn+1 similarly. Let F̃n+1 be the coface (n+ 1)-cube associated
to the coaugmented cosimplicial O-algebra F → F̃ .

The following proposition gives the uniform cartesian estimates on En+1 and Bn+1 (by setting
k = 0) that we will ultimately use to analyze F̃n+1. It is proven in [3, 7.1]; a special case is dealt
with also in [8]. The proposition is a spectral algebra analogue of Dundas’s [10, 2.6] higher Hurewicz
theorem.

Proposition 4.2 (Higher TQ-Hurewicz theorem). Let k ≥ 0 and X be a W -cube in O-algebras
that is objectwise cofibrant. If X is (id + 1)(k + 1)-cartesian, then so is X → UQX .

The uniform cartesian estimates given by Proposition 4.2 applied to En+1,Bn+1 imply a (slightly
weaker) uniform cartesian estimate on F̃n+1.

Proposition 4.3. Let n ≥ −1. The coface (n+ 1)-cube F̃n+1 associated to F → F̃ is id-cartesian.

Proof. It follows from 4.2 that both En+1 and Bn+1 are (n + 2)-cartesian and so [7, 3.8] the cube
En+1 → Bn+1 is (n+ 1)-cartesian. This means that the iterated homotopy fiber [8, 2.6] of En+1 →
Bn+1 is n-connected. Since this is weakly equivalent to the iterated homotopy fiber of F̃n+1, we
conclude that F̃n+1 is (n + 1)-cartesian. Repeating this argument on all subcubes completes the
proof. q.e.d.



8 N. Schonsheck

The following two short lemmas are used in the proof of Proposition 4.6, which states that
levelwise application of the TQ-homology functor preserves this cartesian estimate on F̃n+1.

Lemma 4.4. Let k ∈ Z and let Y be a W -cube in J-algebras. If Y is k-cartesian, then so is UY.

Proof. This is because U is a right Quillen functor and preserves connectivity of all maps, since
this connectivity is calculated in the underlying category ModR. q.e.d.

Lemma 4.5. Let k ≥ −1 and let X be an objectwise cofibrant W -cube in O-algebras. If X is
k-cocartesian, then so is QX .

Proof. If |W | = 0 or 1, note that an O-algebra (resp. a map between O-algebras) is k-cartesian if
and only if it is k-connected. The result now follows from [18, 1.9(b)] and the observation that if X
is cofibrant, then TQ(X) ' UQ(X). To show, more generally, that QX is k-cocartesian, let P1W
be the poset of subsets V $ W . By assumption, hocolimP1W X → XW is a k-connected map of
cofibrant objects, so hocolimP1W QX ' QhocolimP1W X → QXW is also k-connected, by the first
part of the proof. q.e.d.

Proposition 4.6. Let X be a W -cube in O-algebras. If X is objectwise cofibrant and is id-
cartesian, then so is UQX .

Remark 4.7. Before we give the proof of Proposition 4.6 in full generality, here is the argument
assuming that X is a 2-cube, i.e., that W = {1, 2}. In this case, X is the commutative diagram

X∅ //

��

X{1}

��
X{2} // X{1,2}

in AlgO, where each object is (−1)-connected (i.e., 0-cartesian as a 0-cube), each map is 1-connected
(i.e., 1-cartesian as a 1-cube), and the entire square is 2-cartesian.

That the objects and maps of UQX are appropriately connected follows as in the proof of Lemma
4.5. Let us now show that UQX is 2-cartesian. The dual Blakers-Massey theorem of Ching-Harper
[7, 1.9] implies that X is k-cocartesian, where

k = min {k12 + 1, k1 + k2 + 2} = min {2 + 1, 1 + 1 + 2} = 3

By Lemma 4.5, this means that QX is also 3-cocartesian. It is now important to observe that QX
is a diagram in the stable category AlgJ , so the fact that it is 3-cocartesian implies it is 2-cartesian;
see [7, 3.10]. Hence, by Lemma 4.4, UQX is also 2-cartesian.

To see that UQX is objectwise cofibrant, recall that Q is a left Quillen functor and that [18,
5.49] the functor U preserves cofibrant objects.

Proof of Proposition 4.6. Objectwise cofibrancy is proven in the same way as in Remark 4.7. To
show that UQX is id-cartesian, we induct on n. The cases |W | = 0, 1, 2 are handled in Remark
4.7. Suppose now X is a W -cube with |W | = n ≥ 3 and that the result holds for all k-cubes with
k < n. This verifies that UQX is id-cartesian on all strict subcubes, so we must only further show
that UQX is itself n-cartesian.



Fibration theorems for TQ-completion of structured ring spectra 9

As in Remark 4.7, we first establish a cocartesian estimate on X , but now use the higher dual
Blakers-Massey Theorem of Ching-Harper. Adopting the notation of [7, 1.11], observe that each
kV (the cartesianness of a particular |V |-dimensional subcube of X ) is equal to |V | by assumption
that X is id-cartesian. It follows that for any partition λ of W , we have

|W |+
∑
V ∈λ

kV = n+
∑
V ∈λ

|V | = n+ n = 2n

On the other hand,
kW + |W | − 1 = n+ n− 1 = 2n− 1

Hence, X is (2n−1)-cocartesian. By Lemma 4.5, this means QX is also (2n−1)-cocartesian. Since
QX is in the stable category AlgJ , the proof of [7, 3.10] implies that QX is (2n− 1)− n+ 1 = n-
cartesian. Therefore, by Lemma 4.4, UQX is also n-cartesian. q.e.d.

We are now in a position to prove the main result of this section.

Proposition 4.8. Let n ≥ −1 and k ≥ 0. The coface (n + 1)-cube associated to (UQ)kF →
(UQ)kF̃ is id-cartesian. In particular, the natural map (UQ)kF → holim∆(UQ)kF̃ is a weak
equivalence.

Proof. The first part follows inductively from Propositions 4.3 and 4.6. The second part follows by
observing that this cartesian estimate implies that the natural map (UQ)kF → holim∆≤n(UQ)kF̃ is
(n+1) connected (see Proposition 7.6), then using the associated lim1 short exact sequence. q.e.d.

Remark 4.9. The increasing connectivity proven in Proposition 4.8 implies that, for all k ≥ 0,

the map of towers
{

(UQ)kF
}
s
→
{
Tots(UQ)kF̃

}
s

is a pro-π∗ isomorphism.

Remark 4.10. If one relaxes the connectivity assumptions on E,B, but can still show that F̃n+1

is id-cartesian, then Proposition 4.8 remains valid. In this case, since the connectivities of E,B do
not play a role in the following section, the conclusion of Theorem 1.1 also remains valid. We thank
the referee for pointing this out.

5 Analysis of the vertical direction

The purpose of this section is to analyze the maps (∗∗) and, in particular, to prove Proposition
5.5. The basic idea is to first show that, up to homotopy, there is an extra codegeneracy in
each coaugmented cosimplicial diagram F̃n → (UQ)•+1F̃n. This is accomplished by showing that
each F̃n is weakly equivalent to an O-algebra of the form UY and observing that the diagram
UY → (UQ)•+1UY has an extra codegeneracy on the nose. A short spectral sequence argument
then completes the analysis.

Lemma 5.1. For each n ≥ 0, there is a fibrant and cofibrant J-algebra Gn with a natural zigzag
of weak equivalences UGn ' F̃n in AlgO.

Proof. We will prove the n = 0 case. The proof is essentially the same for n ≥ 1. By definition,
and commuting U past a homotopy limit, we have a natural zigzag of weak equivalences

F̃ 0 ' hofib(UQE → UQB) ' U hofib(QE → QB)

and the lemma follows by letting G0 be the functorial cofibrant replacement of hofib(QE → QB)
in AlgJ . q.e.d.
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Lemma 5.2. If Y is in AlgJ , the diagram UY → (UQ)•+1UY has an extra codegeneracy.

Proof. One obtains an extra codegeneracy by defining sn = U(QU)n+1Y
U(QU)nε→ U(QU)nY for all

n ≥ 0, where ε is the counit associated to the (Q,U) adjunction. q.e.d.

Lemma 5.3. If the coaugmented cosimplicial O-algebra X−1 → X has an extra codegeneracy and
X−1 is fibrant, then the natural map

{
X−1

}
s
→ {TotsX}s is a pro-π∗ isomorphism.

Remark 5.4. In the proof below, we use the spectral sequence associated to a tower of fibrations of
O-algebras. For details of the construction, see [8, 8.31]. It is essentially the same as the homotopy
spectral sequence [5, X.6] of Bousfield-Kan; see also [14, VIII.1].

Proof. Fix n ∈ Z and consider the coaugmented cosimplicial abelian group πnX
−1 → πnX. The

assumed extra codegeneracy implies that for any s ≥ 0, we have πsπnX
−1

∼=→ πsπnX. It follows
that there is an induced isomorphism on E2 pages of the homotopy spectral sequences associated
to
{
X−1

}
s

and {TotsX}s. (Here, we are using the fact that, since X−1 is fibrant, the constant

cosimplicial diagram with value X−1 is Reedy fibrant.) The result now follows from [8, 8.36]. q.e.d.

Proposition 5.5. For each n ≥ 0, the TQ-completion map F̃n ' (F̃n)∧TQ is a weak equivalence.

Proof. First, note that both F̃n and UGn (as constructed in Lemma 5.1) are cofibrant. By taking
further functorial replacements, it follows from Lemma 5.1 that there is a natural zigzag of weak
equivalences UGn ' (UGn)c ' (F̃n)c ' F̃n in which each object is cofibrant. This induces a zigzag
of towers

{UGn}s

��

'
{
F̃n
}
s

(∗∗)
��

{Tots(UQ)•+1UGn}s ' {Tots(UQ)•+1F̃n}s

and, by Lemmas 5.2 and 5.3, the left-hand vertical map is a pro-π∗ isomorphism. It follows that
(∗∗) is a pro-π∗ isomorphism as well. Hence, F̃n ' (F̃n)∧TQ is a weak equivalence (see Remark
2.3). q.e.d.

6 TQ-completion of homotopy pullback squares

In this section, we prove Theorem 1.2. The strategy of proof is essentially the same as that used
in the proof of Theorem 1.1. The new arguments given in this section are needed to obtain an
analogue of Proposition 4.3; this is the content of Proposition 6.1 below.

As in the proof of Theorem 1.1, we may assume that B,X, Y are cofibrant, and we then build
the associated cosimplicial resolutions of B,X, Y with respect to TQ-homology; then take levelwise
homotopy pullbacks to obtain a coagumented cosimplicial diagram A → Ã. In other words, we



Fibration theorems for TQ-completion of structured ring spectra 11

obtain maps of coaugmented cosimplicial O-algebras of the form(
A→ Ã

)
//

��

(
X → (UQ)•+1X

)
��(

B → (UQ)•+1B
)

//
(
Y → (UQ)•+1Y

)
(1.12)

such that on each fixed cosimplicial degree, one has a homotopy pullback diagram. For instance,
in cosimplicial degrees 0, 1 we have homotopy pullback diagrams of the form

Ã0 //

��

(UQ)X

��
(UQ)B // (UQ)Y

Ã1 //

��

(UQ)2X

��
(UQ)2B // (UQ)2Y

(1.13)

in AlgO, and these are coaugmented by the diagram in Theorem 1.2. For the same reasons as in
the proof of Theorem 1.1, we may assume A → Ã is objectwise cofibrant, and that Ã is a Reedy
fibrant cosimplicial O-algebra.

Proof of Theorem 1.2. Construct a diagram identical to (1.5). For the same reasons as in Theorem
1.1, the maps (∗∗) induces pro-π∗ isomorphisms after applying Tots. The result now follows from
Proposition 6.1 below and arguing as in the proof of Theorem 1.1. q.e.d.

Proposition 6.1 (cf. Proposition 4.3). Let n ≥ −1. The coface (n+ 1)-cube associated to A→ Ã
is id-cartesian.

Remark 6.2. As in the case of Proposition 4.3, it may be helpful to first understand a low-
dimensional example of Proposition 6.1 before attacking the proof in full generality. Suppose we
wish to show the 1-cube A→ Ã0 is id-cartesian. Consider the corresponding 1-cubes of A,X, Y to
obtain a commutative diagram of the form

A

��

��

// X

��

��
Ã0

��

// UQX

��

B //

��

Y

��
UQB // UQY

(1.14)

in AlgO. We will make frequent use of [7, 3.8] in the following analysis.
Since the back and front faces of (1.14) are both homotopy pullback diagrams (i.e., infinitely

caretesian), the entire 3-cube is also infinitely cartesian. The 1-cubes X → UQX and Y → UQY
are both 2-cartesian (i.e., the maps are 2-connected) by Proposition 4.2 and so the right-hand face
of (1.14) is 1-cartesian. Therefore, the left-hand face is 1-cartesian as well. Since B → UQB is
2-cartesian (also by Proposition 4.2), we conclude that A → Ã0 is 1-cartesian. One then repeats
this argument on all subcubes of A→ Ã0, i.e., on the objects A and Ã0.
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Proof of Proposition 6.1. Denote by Ãn+1,Bn+1,Xn+1,Yn+1 the coface (n+ 1) cubes associated to
the coaugmented cosimplicial diagrams in (1.12). Let C be any subcube of Ãn+1, say of dimension
k. Let CB , CX , CY denote the corresponding subcubes and consider the commutative diagram of
subcubes

C //

��

CX

��
CB // CY

(1.15)

As in Remark 6.2, the first step is to establish that the cube (1.15) is infinitely cartesian. This
is accomplished by Lemma 6.3 below. Next, Proposition 4.2 implies that CX and CY are both
(k+ 1)-caratesian, so the cube CX → CY is k-cartesian. Therefore, the cube C → CB is k-cartesian.
Since CB is (k + 1)-cartesian (also by Proposition 4.2), we conclude that C is k-cartesian. q.e.d.

Lemma 6.3. For any subcube C of Ãn+1, the cube constructed in (1.15) is infinitely cartesian.

Proof. The proof is by induction on k. If k = 0, then C is a single object and the lemma follows by
construction. If k ≥ 1, we may write C as a map of (k − 1)-dimensional subcubes D → E of Ãn+1.
Consider the commutative diagram of subcubes

D

��

��

// DX

��

��
E

��

// EX

��

DB //

��

DY
��

EB // EY

and note that this diagram is precisely (1.15). By induction, the back and front faces (which are
themselves both (k + 1)-cubes) are both infinitely cartesian, so the whole cube is as well. q.e.d.

7 Appendix: cubical diagrams

The purpose of this appendix is to briefly summarize the tools of cubical homotopy theory used in
this paper, particularly in Section 4. While these notions can be defined in other settings, we have
phrased them in the context of O-algebras to keep this section appropriately focused. For the more
interested reader, useful references for cubical diagrams of spaces include [11, A.8], [15], and [22].
In the context of O-algebras, see [7] and [8].

Definition 7.1. Let X be a W -cube of O-algebras indexed on the poset of all subsets of W = [n],
where [n] := {0, 1, 2, . . . , n}. Let P0([n]) be the poset of nonempty subsets of [n]. We say that X is
k-cartesian if the natural map X∅ → holimP0([n]) X is k-connected.

The connectivity of X∅ → holimP0([n]) X gives information about the cube X as a whole. One
might also be interested in subcubes (see [4, 3.6] or [11, A.8.0.1]) of X . This motivates the following
definition, which appears in [10] and [11].
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Definition 7.2. Given a function f : N→ Z, we say that a cube X of O-algebras is f -cartesian if
each d-dimensional subcube of X is f(d)-cartesian; here, N denotes the non-negative integers.

Remark 7.3. For instance, to say that a cube X is id-cartesian means that each d-dimensional
subcube of X is d-cartesian.

Definition 7.4. Let Z−1 d0→ Z be a coaugmented cosimplicial O-algebra. The coface (n + 1)-
cube Xn+1 associated to Z−1 → Z is the canonical (n+ 1)-cube constructed using the cosimplicial
relations djdi = didj−1 for i < j.

Remark 7.5. For instance, X2 has the form on the left, and X3 the form on the right.

Z−1 d0 //

d0

��

Z0

d1

��
Z0 d0 // Z1

Z−1

d0

��

d0

!!

d0 // Z0

d1

��

d0

  
Z0

d1

��

d1 // Z1

d2

��

Z0 d0 //

d0 !!

Z1

d0   
Z1

d1
// Z2

One of the reasons cubical diagrams are useful is that (as described above) they naturally arise
from cosimplicial diagrams, combined with the following fact, which is proven in [6, Section 6], [9],
and [26, 6.7].

Proposition 7.6. For n ≥ 0, the composite

P0([n])→ ∆≤n

is left cofinal (i.e., homotopy initial).

The upshot is this: Given a coaugmented cosimplicial O-algebra Z−1 → Z, the map Z−1 →
holim∆≤n Z is k-connected if and only if the associated coface (n+ 1)-cube Xn+1 is k-cartesian.
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